Terry Fox-funded researchers have made a critical finding in monitoring breast cancer patient response to chemotherapy treatment: patient response to treatment can be detected in as little as one week by using optics and ultrasound respectively instead of waiting the traditional four to six months. Their findings were published in Oncotarget (March 2016).
Breast cancer is the second-leading cancer related death in women, and there are more than 17 different tumour subtypes. About 10 to 15 % of tumours fall under the category of locally advanced breast cancer (LABC), defined as Stage 3 to 4 tumours that are greater than five centimetres in size, and potentially involving one or more lymph nodes. Further, survival outcomes for LABC are poor: Only 25% of women may achieve complete pathological response and up to 46% of patients may develop recurrence within five years.
The present study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers of LABC in 22 different patients at weeks 0, 1, 4, 8, and post-operatively. Cell death detection was done using quantitative ultrasound and spectroscopic methods the team developed, while the optical work tracked changes in hemoglobin and blood flow.
The results were promising: QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters were shown to increase the sensitivity and specificity of classifying LABC patients as early as one week after the start of treatment.
The present publication is the first in-human study showing that QUS and DOSI work effectively both alone and together, and could be used as low-cost tools to personalize a patient’s chemotherapy treatment. The potential impact in the clinic is huge: a patient would no longer be required to undergo four to six months of treatment that isn’t going to work. Instead, treatment success can be very quickly assessed and changed to a different type of chemotherapy if necessary.
Study: Multiparametric monitoring of chemotherapy treatment response in locally advanced breast cancer using quantitative ultrasound and diffuse optical spectroscopy.
Authors: William T. Tran, Charmaine Childs, Lee Chin, Elzbieta Slodkowska, Lakshmanan Sannachi, Hadi Tadayyon, Elyse Watkins, Sharon Lemon Wong, Belinda Curpen, Ahmed El Kaffas, Azza Al-Mahrouki, Ali Sadeghi-Naini, Gregory J. Czarnota
Funding: This work was supported by the Terry Fox Foundation and the Canadian Breast Cancer Foundation.
Reported in TFRI Links, Issue 1, Fall 2016